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Summary

A bistatic k-space image concept for frequency
domain (FD) electromagnetic (EM) computer codes is
presented. The concept enables images to be computed
without the frequency sweep required for experimental
images, which results in a significant reduction in com-
putational effort. This analytical image technique uses
bistatic radiation computed from a generalized radiation
integral.

Images permit physical insight and understanding
into how a radiation or scattering pattern is produced by
decomposition of the resultant radiation into contribu-
tions from localized scattering centers orhot spots.
Knowledge of these hot spots permits a user to under-
stand and modify the structure to obtain desired features.

The costs associated with computation of bistatic
images are usually small compared with the effort
required to obtain the current distribution. Bistatic
k-space fields are computed from the currents by the gen-
eralized radiation integral. This is similar to the effort
required to compute a bistatic radiation pattern. The
computed k-spaceE(k) fields are then Fourier trans-
formed to obtain the spatial image.

The bistatic k-space technique can be applied to both
antenna and scattering problems. It can be used with any
frequency domain computer algorithm that produces a
current distribution on the geometric structure. Images
can be computed in one, two, or three dimensions, which
typically correspond to downrange, downrange–cross-
range, and volumetric images, respectively.

Bistatic scattering images are shown for a variety
of target geometries computed by FD EM prediction
algorithms that include method-of-moments–patch
(MOM-patch), body-of-revolution (BOR), and BOR-
patch computer codes; physical optics (PO) computer
codes; and finite element frequency domain (FEFD)
computer codes. High-level details are presented show-
ing how to incorporate this image technique into each of
these computer codes. Implementation is not difficult
because most computer codes already have subroutines
utilizing the normal radiation integral. The radiation sub-
routines need only be generalized to compute arbitrary
points in k space rather than withkradial

 as a function of
angle.

The k-space scattered fields are computed on an
orthogonal grid in k space corresponding to(kdown,
kcross, kvol). These are independent and, thus, eliminate
image-smearing problems commonly associated with
frequency-angle circular arc k-space inverse synthetic
aperture radar (ISAR) experimental images.

Bistatic k-space images are not the same as those
produced by the swept frequency experimental approach;
however, they have many similarities. Comparisons
between the two image approaches are discussed with
specific examples shown.

Introduction

Electromagnetic diagnostic imaging at microwave
frequencies for scattering bodies has been a great help in
the physical understanding and design of these bodies.
Imaging permits physical understanding of fundamental
scattering mechanisms responsible for the overall scat-
tered energy. Images provide this understanding by
decomposition of the resultant scattered radiation into
contributions from localized scattering centers or hot
spots. With this information the user can modify the
structure to obtain desired features such as a lower or
higher radar cross section (RCS) or to synthesize a
desired antenna pattern.

Experimental imaging is accomplished by illumina-
tion of the target with a bandwidth of frequencies, which
emulates the frequency content of a short pulse. This
same process could also be used analytically; however,
in computer intensive solutions such as the method of
moments where a new matrix would be required at each
frequency, this image approach is seldom used. This
report describes a bistatic k-space analytical imaging
technique that uses a single frequency to obtain an image
and results in efficient image computation in terms of
computer resource time. This analytical bistatic-imaging
technique can be applied to both antenna and scattering
geometries in contrast to experimental imaging, which
has principally been used for scattering applications.

Electromagnetic microwave imaging was first done
experimentally for scattering applications. The work of
Mensa in 1980 (ref. 1) popularized the technique. Within
a decade, many other experimental ranges appeared with
imaging capabilities; these included the far-field outdoor
ranges and the indoor compact ranges, which utilized a
reflector dish to illuminate targets with planar waves.
The experimental image approach typically produces
one-dimensional downrange and two-dimensional down-
range–cross-range images.

Experimental downrange images are obtained by
illumination of the target with nanosecond short pulses
whose spatial extent is much less than the target dimen-
sions. The reflected return is then naturally a function of
downrange time delay (distance). Typically, short pulses
are seldom used but are emulated by illumination of the
target with an equivalent bandwidth of frequencies
synthesizing a short pulse. Because time and frequency
are a Fourier transform pair, the two approaches are
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equivalent. By measurement of the reflected amplitude
and phase over a bandwidth of frequencies, a Fourier
transform can be used to obtain the time-delayed down-
range image. The time-delayed amplitude data are then
readily converted into downrange distance by a knowl-
edge of the velocity of propagation. Typically the fast
Fourier transform (FFT) is used to transform between the
time domain (TD) and frequency domain (FD).

Experimental cross-range image information is
obtained by rotation of the target over a small angular
interval centered on the viewing angle by use of inverse
synthetic aperture radar (ISAR) techniques. Because
angle and cross-range are related to wave number k and
spatial positionr, which make the Fourier transform pair
kr, the scattered radiation can then be Fourier trans-
formed to obtain cross-range image information.

Images may also be computed from numerical solu-
tions of Maxwell’s equations. Two types of solution for-
mulations exist: time domain and frequency domain.

Time domain solutions naturally produce a time-
delayed scattered field because the illumination source is
a short pulse. From this time solution, the frequency
domain solution is obtained by a Fourier transform. Such
computer codes have existed but, until recently, have
never been accepted and used; most users are interested
in the frequency domain solutions directly, e.g., a plot of
scattered radiation versus angle.

Frequency domain computational solutions at single
frequencies are more common because they produce an
RCS or antenna scattering pattern directly without the
need to perform a Fourier transform. These FD solutions
can also be used to compute images similar to experi-
mental images by recomputation of the solution for each
frequency in a desired bandwidth, i.e., 16, 32, ..., 512, ...
solutions. Usually this is such a time-consuming task that
the approach is not considered because such algorithms
that are based on the method of moments require a matrix
fill, a lower and upper triangular matrix decomposition
(LU), and a back solution for each frequency. Thus,
while an image could in principle be obtained from FD
algorithms, they seldom if ever are pursued, particularly
for electrically large bodies where matrix sizes can easily
exceed 10000 unknowns.

Analytically, bistatic images from FD algorithms
that use only a single frequency of excitation have not
been available until just recently. The bistatic k-space
image technique permits an FD algorithm to produce an
image in one, two, or three dimensions for one excitation
frequency and at one excitation angle.

The utility of this technique is obvious. The bistatic
imaging approach is computationally more efficient than
the experimental imaging approach, which requires mul-

tiple frequencies and multiple angles in the imaging
computations.

A bistatic image obtained with a single-current solu-
tion from a MOM computer code was first accomplished
by Cooper in unpublished efforts (circa 1987). This
approach involved the use of a far-field radiation integral
to produce a downrange image. Latter efforts by Shaeffer
to extend Cooper’s image method to two dimensions
without image focus-smear problems led to a theoretical
bistatic k-space formulation for the approach. This theory
was the foundation and rationale for the application of
Cooper’s approach. (See refs. 2 and 3.)

The bistatic k-space image approach uses a single
computed current distribution with a generalized far-field
radiation integral. The usualkscat vector in the radiation
integral is generalized tokdown, kcross, and kvol. The
Fourier transform of this computed scattered field ink
space is then transformed into an image from the trans-
form pair  wherek is the wave vector andr  is the
spatial position.

The images derived by the bistatic computational
approach are not the same as those by the experimental
approach. However, great similarities exist between the
two imaging approaches. Given that a bistatic image can
be easily computed, significant diagnostic information
can be obtained from computational algorithms for an
insignificant incremental cost increase.

The bistatic k-space image algorithm has the follow-
ing features:

• Applicable to any frequency domain EM computer
code that computes a current distribution located on the
target geometry, e.g., MOM, PO, and FEFD

• Images computed with the generalized bistatic radia-
tion from the fixed current source

• Easily obtained resolution approaching 0.5λ
• One-, two-, or three-dimensional computed images

• Antenna images

• Scattering images

• Linear or circular polarization

• Backscatter or bistatic image directions

• Copolarized or cross-polarized images

• Single frequency and illumination angle

• No image smearing becausekdown, kcross, andkvol are
independent

A similar bistatic technique not involving a current
distribution has also been used by Bhalla and Ling
(ref. 4) for a shooting bouncing ray trace computer code
that is applicable to high-frequency scattering where only

k r⋅
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specular scattering is computed. In their implementation,
the bistatic scattered field is computed directly from the
ray trace procedure after the ray bundles have been spec-
ularly reflected by one or more bounces from the target.

This report presents the development of the bistatic
k-space image theory and shows its implementation and
results for several EM computer code algorithms for a
variety of geometric targets. Results are monostatic scat-
tering oriented; however, one antenna application is
illustrated. Three-dimensional images are also shown for
several scattering geometries. Lastly, the theory for the
swept frequency experimental image approach is
reviewed and examples of measured images are pre-
sented for direct comparison with the analytical bistatic
image approach.

Symbols

A(k), A(r ) arbitrary function in k and position spaces

a radial dimension, m

B bandwidth, Hz

c speed of light, m/sec

E electric field, V/m

E electric field vector

receiver unit polarization vector

f frequency, MHz or GHz

G Green’s function

H magnetic field intensity, A/m

H magnetic field vector

magnetic field unit vector

J current distribution, A/m

j =

k wave-number scalar, m−1

k wave-number vector

unit wave-number vector

l length

N number of image computational points

surface normal vector

n index; mode number

R spatial position distance, m

R radiation transfer (row) matrix

r spatial position vector,m

r spatial position,m

S surface area, m2

W(k), W(k) window weight function, 0 <W(k) < 1

X, Y, Z orthogonal coordinate axis

unit vector inZ direction

∆k bandwidth ink space

∆r image resolution

∆t time delay

εr relative dielectric constant

θ polar (elevation) angle fromZ-axis, deg

λ wavelength, m

µ permeability, H/m

ρ electric charge density, C/m3

σ radar cross section, m2

ϕ azimuth angle, deg

ω radian frequency (2π f ), rad/sec

∂a elemental area, m2

Subscripts:

cross cross-range direction

down downrange direction
g, gain gain

i, j, k index

max maximum

min minimum

new translated position

old original position

r radial direction

rot rotated position

vol volumetric direction

0 excitation condition

Superscripts:
e excitation direction

i, inc incident direction

p port

radial radial direction

s, scat scattered direction

t time

α polarization variable

Abbreviations:

BOR body of revolution

CW creeping wave

DFT discrete Fourier transform

EM electromagnetic

EMCC Electromagnetic Code Consortium

FD frequency domain

êr

ĥ

1–

k̂

n̂

ẑ
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FEFD finite element frequency domain

FEM finite element method

FFT fast Fourier transform

GO geometric optics

ISAR inverse synthetic aperture radar

LU lower and upper triangular matrix
decomposition

MOM method of moments

PEC perfect electric conductor

PO physical optics

RCS radar cross section

SAR synthetic aperture radar

TD time domain

TW traveling wave

Special notation:

dBi decibel power level relative to isotropic for
antenna gain patterns

dBsm decibel power relative to 1.0 m2 for scatter-
ing cross section

dBλ decibel power relative to wavelength for
scattering cross section (2-D)

dBλ2 decibel power relative to wavelength
squared for scattering cross section (3-D)

Theory

This section outlines the bistatic k-space image the-
ory and the generalization of the standard radiation
integral. A later section will compare this bistatic compu-
tational image approach with the experimental image
approach.

The bistatic k-space image technique is developed
starting with the general Fourier transform.

A natural Fourier transform pair, a dimensionless
number, is the vector dot product  of wave number
k and spatial locationr . These may be scalar quantities
or may be vectors

(1)

where k has magnitude  and λ is the
wavelength.

Given a source distributionA(k) that is a function of
the wave vectork, its Fourier transformA(r ) is a function
of spatial location (Brigham, ref. 5):

(2)

whereW(k) is a window weight function. This integral is
the spatial image of the source functionA(k). GivenA(k)
at a suitable number of points ki, a standard Fourier trans-
form such as a fast Fourier transform (FFT) or a discrete
Fourier transform (DFT) is applied to obtain the image,
i.e., the complex square amplitude  The previous
integrations were written in terms of a standard rectangu-
lar coordinate system; however, image rectilinear coordi-
nates will be downrange, cross-range, and volumetric.

Let the transform quantityA be identified as the scat-
tered electric fieldEs caused by a current distributionJ.
If E(k) can be computed, then an image  can be
computed from equation (2).

Excitation

The scattered fieldE is defined in a bistatic sense,
i.e., as a function of excitationke and direction of scat-
tered radiationks,

(3)

The excitation which produced the current distribution
on the body could be from a localized region or port on
the body, as in the case of an antenna, or could be from
an incident plane wave of given polarization and incident
direction. If the excitation is from an incident plane
wave, thenke is set equal tok i wherek i is the wave vec-
tor of the incident radiation. For antenna problems where
only a localized port or region has a voltage excitation,
ke is set equal tokp wherekp represents the local port
and direction of the applied voltage.

Computing Images in k Space

The essential problem of computing an image is to
compute the scattered fieldE as a function of k-space
image coordinates. Orthogonal rectangular coordinates
with uniform increments on each axis must be used for
input to the FFT algorithm so that image smear and
defocus do not occur. The natural orthogonal k-space
vector coordinates for images are in the downrange,
cross-range, and volumetric directions,

(4)

shown vectorially in figure 1.

k r⋅

k r⋅ kxr x kyr y kzr z+ +=

k 2π/λ=

A rxr yr z( ) W k( )A kx ky kz, ,( )∫∫∫=

e
j kxr x kyr y kzr z+ +( )

kxd kyd kzd×

A r( ) 2.

E r( ) 2

E
s

E
s

k
e

k
s,( )=

k k down kcross kvol, ,( )=
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An azimuth and elevation  angular direction
in space is selected relative to the target to specify where
the radiation image is to be obtained, i.e., the direction in
space where the scattered (radiated) field from the target
current distribution is to be evaluated. For scattering
problems the angular location does not have to be in the
same direction as the plane-wave illumination. The
downrange direction is defined by the radial vectorkr
pointing toward the origin and the angular coordinates of
the desired image  (See fig. 1.)

The cross-range direction can be either or .
This choice dictates the sense of rotation of the target for
cross-range. In geometries such as airplanes where the
X-axis is along the body (station line), theY-axis is
across the body (butt line), and theZ-axis is vertical
(water line), the usual choice for cross-range is a rotation
about theZ-axis, i.e., . For bodies of revolu-
tion, the cross-range direction is in the polar direction,

. Once the cross-range direction is chosen,
the volumetric direction is then orthogonal to (kr, kcross),
i.e., either  or . Note that, while the natural vector
directions for an image correspond to the spherical coor-
dinate vectors, the image coordinates are rectangular, not
curvilinear. The spherical unit vector directions are set
by the image angular location choice ,

(5)

Thus, to compute an image, the scattered field ink space
must be computed as a function of

(6)

for input to the Fourier transform.

Generalized Radiation Integral

The scatteredk-space radiation field from the current
distribution J is calculated from a generalization of the
standard radiation integral. Given a current distribution
J, the far-field radiation is

(7)

where the integration is over the source currentsJ on the
body and  or  for the desired polarization of the
scattered field.

If kscat was in the outward radial direction,
, then equation (7) would be the

usual radiation integral. In fact, the standard radiation

integral is the Fourier transform in the outward radial
direction of the body current distribution.

For computed images,kscat is generalized to be a
volume ink space,

(8)

so that the Fourier transform ofE(kscat
) is the image:

(9)

The square amplitude is then proportional to power, i.e.,
either radar cross section,σ, or antenna gain:

(10)

The radiation integral is used to compute the scattered
field in k space; thus, the technique is given the name
bistatic k-space imaging.

Focus and image smearing is not an issue with the
bistatic k-space approach as it is with the experimental
image approach. TheE(k) array can be computed at any
arbitrary set of ki points. Thus, if an evenly spaced
orthogonal grid of points is chosen, focus and image
smear can be prevented.

Image Resolution

The resolution of the image is the size of each down-
range and cross-range cell. Scattering centers cannot be
discriminated from each other when separated by less
than the resolution dimension. With a decrease in the cell
size, the position of the scattering centers can be deter-
mined more precisely. The resolution is set by the extent
of the k-space region used to compute the bistatic fields.
Downrange and cross-range resolutions can be set to dif-
ferent values but are considered to be equal herein to
simplify the discussion. Given a desired image resolution
∆r, the related k-space bandwidth∆k is

(11)

The downrange  vector sweep is centered
about the free-space wave number for the excitation
wavelength (fig. 2):

(12)

θ ϕ,( )

θ ϕ,( ).

kθ kϕ

kcross kϕ=

kcross kθ=

kθ kϕ

θ ϕ,( )

k̂ r θ ϕcossin θ ϕsinsin θcos, ,( )=

k̂θ θcos ϕcos θcos ϕsin θsin–, ,( )=

k̂ϕ ϕsin– ϕcos 0, ,( )=








E kdown kcross kvol, ,( )

E
α scat,

k
scat

k r ′
e,( ) n̂

α
J k

e( )⋅[ ]ej kscat r ′⋅( )
S′d∫=

α θ= ϕ

k
scat

2π/λ( )k̂ r θ ϕ,( )=

k
scat

kdown kcross kvol, ,( )=

E
α

r down r cross r vol, ,( )

W k( )E kdown kcross kvol, ,( )∫∫∫=

e
j kdown

.r +kcross
.r +kvol

.r( )
× kdown dkcrossdkvold

σ E
α

r down r cross r vol, ,( )
2

∝

∆k
2π
∆r
------=

kdown

kdown k0
∆k
2

------±=
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where  and  corresponds to the excitation
wavelength. The downrange image scattered field is thus
swept about the excitation wavelength.

At 0.5λ resolution,  and the k-space band-
width from equation (11) is . From equation (12), the
corresponding minimum and maximum downrange kr
values are

(13)

where the maximum downrange k is twice the incidentk0
value.

If the resolution is greater thanλ/2, the downrange
 direction changes sign, i.e., the bistatic field is being

computed from the opposite side of the target. When this
occurs, forward-scatter bistatic data are being included in
the image computation.

The extent of the image in each direction sets the
number of pointsN computed along each image axis,

(14)

whereN is the order of the Fourier transform. IfN is not
a power of 2, the data can be zero padded up to the next
power of 2 for input to a FFT. The spatial extent can be
different for each direction but is chosen equal in this dis-
cussion.

Note in equation (11) that the image resolution
depends solely upon the bandwidth extent of the k-space
data and is not theoretically constrained to any particular
value. However, practical guidelines must be considered
to compute images with properly located scattering cen-
ters. Experimental imaging issues are discussed in the
appendix.

Selection of Image Resolution

One constraint on the image resolution is the discrete
nature of the underlying electromagnetic analysis. Typi-
cally, EM computer codes break the problem into meshes
whose elements have sizes that are a fraction of a wave-
length; a size of 0.1λ is common. If the resolution and the
dimension of individual elements of the mesh are
approximately the same, each mesh becomes afalse scat-
tering center in the image. The use of 0.5λ or greater res-
olution avoids this problem.

A second consideration is to determine what physi-
cal size is associated with the concept of a scattering cen-
ter because resolution cells larger than scattering center
dimensions are usually desirable. While the scattering
center concept is well founded, it is not well defined in

terms of wavelength. The minimum size that constitutes
a scattering center needs to be estimated. Certainly 0.5λ
is a lower bound, and 1.0λ to 2.0λ is probably more real-
istic. Targets which are less than severalλ in size could
use the lower resolution bound, while targets manyλ in
size could use resolution sizes much greater.

Another guideline for the resolution size is related to
the bandwidth of k-space data used in the image compu-
tation. The objective of the image process is to identify
scattering centers for a single incident and scattered field
angle (herein called the “image angle”). Note in
equation(12) and figure 2 that the image data are cen-
tered around the scattered field free-k-space vector. As
the resolution is decreased, a wider bandwidth of bistatic
angular data are required to compute the image. Because
scattering centers are a function of incident and scattered
field directions, scattering centers may change drastically
when a wide bandwidth of k space is imaged. The image
will then include scattering centers not associated with
the desired image angles. For an extreme example, a 0.5λ
resolution for a 3-D volumetric image samples the
bistatic radiation in the half-space 2π sr of the target.

The bistatic angular bandwidth requirements for var-
ious resolutions are shown in figure 3. These bandwidths
are computed with the downrange set to  and rep-
resent the bistatic view angle range when .
Figure 3 shows that with an increase in resolution cell
size, the bandwidth of k-space data can be reduced, and
the image can reflect scattering centers at the image
angle more accurately because less bistatic angle data are
utilized.

To demonstrate the changes that occur in the image
as the resolution is increased, the Electromagnetic Code
Consortium (EMCC) 2-D Benchmark 1 (ref. 6) is imaged
by a 2-D finite element frequency domain computer code
at 300 MHz with resolutions from 0.5λ to 2.0λ. The
geometry and images are shown in figure 4. Figure 4(b)
shows images for horizontal polarization; figure 4(c)
shows images for vertical polarization. The radar is
located at the bottom and propagates from bottom to top
along the downrange axis. The bistatic data are centered
around the incidence angle to create a backscatter image.
Image contours are separated by 5 dB of echo width,
from a minimum contour of−30 dBλ.

For 0.5λ resolution in figure 4(b), the leading- and
trailing-edge diffraction scattering centers are apparent,
and a separate diffraction from the dielectric tip as well
as the top of the perfect electrical conductor (PEC) is
observed. However, this image indicates a−25-dB scat-
tering center along the ogival shape from leading edge to
trailing edge. This is most likely asurface wave scatter-
ing center, where energy in the dielectric coating is
escaping along the length of the ogive and is being

k0 2π/λ0= λ0

∆r λ/2,=
2k0

kr ,min 0=

kr ,max 2k0= 



kr

N
Spatial extent

∆r
--------------------------------=

k r k0
kdown k0=
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reradiated in the directions being sampled for wide angle
bistatic image. As the image resolution cell size is
increased from 0.5λ to 1.5λ in figure 4(b), the surface
wave scattering center disappears because of the reduced
k-space bandwidth, indicating that it is not a strong scat-
terer in the backscatter direction.

Images of the same geometry at vertical polarization
are shown in figure 4(c). In these images, the minimum
contour represents−5 dBλ and each contour is separated
by 5 dB. The 0.5λ and 2.0λ resolution images are shown.

At vertical polarization, a propagating trapped wave
is not expected and is not observed in figure 4(c). The
primary scattering for this polarization is the diffraction
from the leading edge of the metallic ogive.

In summary, different resolution cell sizes provide
different insights into scattering mechanisms of bodies.
However, the user must be aware of the problems associ-
ated with choosing a small resolution, e.g., the finite
element method (FEM) discretization and the wide band-
width requirement.

k-Space Computational Points

The downrange k vector is centered on the free-
space wave number 2π/λ, andE(kscat

) is computed from
equation (7) at thekscat

 locations:

(15)

where the range over .
This forms a cubic volume in k space centered at

 over whichE(k) is computed from
equation (7) on a uniformly spaced rectangular grid.

Fourier Transform Issues

The E(k)-computed array is one-, two-, or three-
dimensional depending on the type of image desired,
i.e., downrange, downrange–cross-range, or volumetric,
respectively. The next step is to window the respective
data array with a weight function to reduce the signal-
processing side lobes in the resulting Fourier transform
where . Many choices are possible such as
rectangular (no weights), Hamming, and Hanning. For
square or volumetricE(k) arrays, the usual approach has
been to multiply each row and column separately by

. An alternate method (ref. 5) is to use a radially

symmetric weight function .

After theE(k) data array has been multiplied by the
desired weight function, the next step is to pad the array
from N up to the next power of 2 to utilize an FFT algo-
rithm. Additionally, smoother image data, albeit without
improved resolution, can be obtained by padding the
E(k) array with additional zeros beyond the first required
2n.

As determined by the particular FFT algorithm, the
resultingE(r ) data have to be re-sorted by quadrants to
put ther  = 0 point at the center of the array. An addi-
tional task is to form the scalar square amplitude because
power rather than electric field is the usual image quan-
tity of interest. Phase information is not used. Scaling of
the image data may also be required depending again on
the particular FFT algorithm utilized. Finally the image
data are usually expressed in decibel form: typically
dBsm is used for scattering, while dBi, the power gain
relative to isotropic, could be used for antenna cases.

Image Center of Rotation

The rotation image center is at the coordinate center
of the EM geometry model describing the current distri-
bution. Often this origin is at one end of the body, such
as at the nose of an airplane. A simple phase shift of the
E(k) data can be used to move the center of rotation to
any desired location.

The image is computed with various downrange and
cross-range values ofkscat

. Downrange direction implies
that the corresponding radial direction points toward the
origin of the coordinate system. This origin is then the
center of the image window extent for the resulting
image. Often, however, the coordinate system for the
body geometry has an origin that is not located at the
center of the window extent. For example, most airplane
coordinate systems define an origin at or near the air-
plane nose. For imaging, one would like to place the ori-
gin midway down the body so that the resulting image
fills the window extent. To accomplish this translational
shift of coordinates, a user could change all the airplane
coordinates in the geometry model files. A simpler
approach is to introduce a phase shift that corresponds to
the desired coordinate translation.

The k-space scattered field for the original orold
bistatic scattered field radiation integral is

(16)

k i j k,,
scat 2π

λ
------

i 0.5–( )
N

--------------------∆k+ k̂down=

j 0.5–( )
N

--------------------∆k k̂cross
k 0.5–( )

N
---------------------∆k k̂vol+ +

i j k,,( ) N/2–( ) 1 N/2,+( )=

kdown θ ϕ,( ) 2π/λ=

0 W k( ) 1≤≤

W k i( )

W ki j k,,( ) ki
2

kj
2

kk
2

+ +=

Eold
scat

k
s( ) J k

i
r,( )e jks

– .r
Sd∫∫∫=
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When a new reference origin  is defined relative to
the old body origin, the new image transform becomes

(17)

Therefore, a coordinate shift is implemented as a phase
shift at each k-space scattered field value prior to calcula-
tion of the Fourier transform of the data. Remember that
the coordinate rotation matrix then applies for each given
viewing angle:

(18)

Discussion

The bistatic k-space image technique offers several
advantages when compared with the experimental sweep
frequency angle rotation images. The source current
distributionJ(k i,r ) is fixed, i.e., does not vary withkscat.
This means that the resulting image is from a current dis-
tribution that does not vary with incident frequency or
with rotation angle as is the case with experimental
images. No questions are posed as to what frequency and
angle the resulting image represents as is often the case
with the experimental approach. Experimental images
utilize monostatic (backscatter) radiation as a function of
frequency and rotation angle to form an image, while the
bistatic k-space approach uses bistatic fields from a fixed
current distribution.

The most important advantage of this technique is
that only one current distributionJ(k i,r ) is required. For
computer codes such as MOM, the matrix needs to be
computed at only the frequency of interest, and only one
voltage vector excitation is required to obtain the desired
current distribution. The computation of theEscat(ks)
array is equivalent to the computation of a bistatic scat-
tered field, which typically requires a very small percent-
age of the overall MOM computational effort.

Another advantage is that traveling-wave current
sources are imaged over the regions of their existence.
This occurs because the source excitation frequency is
fixed, whereas for the experimental case, the source exci-
tation frequency varies. In the latter case, radiations from
traveling-wave currents image at the reflection points
which have stationary phase. Thus the bistatic-imaging

technique produces images that have a truer representa-
tion of the radiation from the current distributionJ.

Implementation and Example Results

Method-of-Moments Computer Code
Implementation

The implementation of the bistatic k-space images
into a MOM computer code involves development of
subroutines to computeEscat(ks) at the required points in
k space as well as routines to perform the FFT and to
scale and present the image data. Actual computation of
Escat(ks) can be accomplished with the standard MOM
row measurement vector subroutines with only slight
modifications. Scattered fields in MOM are computed
from the inner product of the current vectorJ and the
row measurement vectorRα evaluated for the radiation
at the desired azimuth and elevation angle,

(19)

whereα = θ or ϕ polarization of the scattered field. The
row measurement vector is defined (ref. 7) as

R i
α(θ, ϕ) = 〈(n̂α ⋅ Ji), e−jkr(θ, ϕ)⋅r 〉 (20)

where kr(θ, ϕ) is the radial wave-number vector with
amplitude 2π/λ, pointing to the desired polar and azi-
muth angle,Ji is the current basis function, and〈 〉 repre-
sents a generalized inner product.

For computation of bistatic fields, the row measure-
ment vector is redefined by replacement of the radialkr,
which is a function ofθ and ϕ, with the nonradialks

defined by equation (15),

R i
α(ks) = 〈(n̂α ⋅ Ji), e−jks⋅r 〉 (21)

so thatE(ks) is computed as

(22)

The row measurement computational subroutine,
often the voltage vector routine, can usually be modified
to compute equation (21) rather than equation (20). To
compute equation (20), a Cartesian vectorkr as a func-
tion of (θ, ϕ) is formed in the subroutine. A simple
change to input a Cartesian vectorks as input to the row
measurement computational subroutine can be made.
Then equation (21) is computed with the same routine as
equation (20).

The vector frame of reference used to compute equa-
tion (20) or (21) is typically that of the target body
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coordinate system. Hence, theks vector, composed of the
componentskdown, kcross, and kvol, is

(23)

This must be expressed in the target reference
Cartesian form for input to the row measurement vector
subroutine. For a given elevation and azimuth angle of
the image, the Cartesian representation fork becomes
(eq. (5) and fig. 1)

(24)

This vector is input to the modified row measurement
routine used to compute bistatic radiation.

Patch Method-of-Moments Computer Code
Example Results

The results presented are for several examples that
use the three-dimensional method-of-moments patch
computer code MOM3D. (See ref. 2.)

Square plate.Results for the first example of a 3.0λ-
square plate show 1-D downrange and 2-D downrange–
cross-range for three view directions: (1) perpendicular
to the plate, which illustrates specular scattering, (2) per-
pendicular to the edges at an elevation angle of 10°,
which illustrates leading and trailing-edge scattering, and
(3) along the plate diagonal at an elevation angle of 10°,
which illustrates edge- and traveling-wave scattering.
The wavelength was 1 m; thus, the scattering amplitudes,
while presented in units of dBsm, may also be interpreted
in units of dBλ2.

The plate computational triangle mesh, shown in fig-
ure 5(a), was composed of 512 triangles and resulted
in 736 couples for an average sample density of
82unknowns per square wavelength. The horizontal and
vertical polarization backscatter from this plate for a
principal plane cut and a cut through the plate diagonal
is shown in figure 5(a). The images were computed at a
resolution of 0.5λ and were processed with a Hanning
weighting function.

The bistatic images are centered on the backscatter
direction. The 1-D coordinate system is reversed from
normal presentation, i.e., the downrange direction axis is
vertical and the radar cross section amplitude scale is
horizontal. This orientation allows the 1-D and 2-D
images to be placed side by side for comparative pur-
poses. The 2-D downrange–cross-range contour images
are presented in the usual way with the horizontal axis
being cross-range and the vertical axis being downrange.

The radar illumination source is centered beneath each
image. Each contour line represents a 10-dB increment
with the minimum contour set to−30 dBsm.

View 1 in figure 5(b) shows the 1-D downrange and
2-D downrange–cross-range images perpendicular to the
plate. For this plate, the physical optics cross section is
σ = 4πA2/λ2 = 30dBsm. This is the peak value for the
downrange image and for the polar plot in figure 5(a).
When one scattering mechanism dominates a given illu-
mination angle, as is the case here, the 1-D downrange
peak scattering amplitude matches the polar plot coher-
ent RCS level. If two or more scattering mechanisms of
nearly equal amplitude are present, then the polar coher-
ent level does not usually match the downrange image
peak values and depends on how two or more scattering
centers add (or subtract) in phase.

The 2-D contour image shows equal scattering
across the breadth of the plate. The scattering lobes in
front and behind the plate are the FFT signal-processing
side lobes (different windowing functions can reduce the
side lobes). The 2-D amplitudes are not the same levels
as the coherent peak RCS or the downrange peak. The
2-D amplitudes include the highly coupled effects of tar-
get cross-range dimension, resolution, and extent. (See
appendix for discussion of 2-D amplitudes.) Therefore,
the chief value of the 2-D images is to illustrate locations
of scattering centers and their relative amplitudes.

View 2 in figure 5(c) shows images at a 10° eleva-
tion perpendicular to the plate edges; scattering from the
leading and trailing edges of the plate is indicated. For
parallel (horizontal) polarization, the leading edge is
brighter and has a magnitude close to the edge value of
σ = l2/π = 4.5dBsm. The 1-D and 2-D images clearly
show the leading edge as the dominant scatterer. Because
this is horizontal polarization, two edge waves are
also reflecting from the rear platevertices. For per-
pendicular (vertical) polarization, the trailing edge is
thedominant scatterer as shown in the 1-D and 2-D
images. Because this plate is in the resonant region, this
trailing-edge return is interpreted as a surface traveling
wave (TW) reflected from the trailing edge. The view
angle, at a 10° elevation, is well below the peak ampli-
tude for this scattering mechanism, which occurs near
σTW = 49(λ/l)1/2 ≈ 28° elevation as shown in the coher-
ent RCS plot. The trailing-edge-reflected traveling-wave
images with a peak at the back edge and decreases in
amplitude as the reflected wave decays because of radia-
tion energy loss.

View 3 in figure 5(d) shows images at a 10° eleva-
tion along the plate diagonal (45° azimuth); the edge-
and traveling-wave scattering are dominant. For parallel
(horizontal) polarization, diffraction from the front ver-
tex and edge traveling-wave reflection from the two side
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vertices are evident. Not much energy is reflected from
the rear vertex. The 1-D downrange image shows that the
returns of the two vertices are at the same downrange
location and have the same phase; hence, they add and
are superimposed on each other. The left-right asymme-
try in the 2-D image is due to the computational triangle
mesh-couple asymmetry. For perpendicular (vertical)
polarization, note that the only scattering mechanism is a
surface traveling wave being reflected from the rear ver-
tex tip.

NASA almond.In the second example, 2-D images
are presented from the results of the MOM3D computer
code applied to the NASA almond shown in figure 6.
The NASA almond (ref. 8) is a doubly curved surface
with a pointed tip. It has low RCS when viewed in
the tip angular sector. Elsewhere, a surface normal is
alwayspointing back toward the radar creating a bright
high-level specular RCS return. In addition to specular
mechanisms, surface traveling waves (TW) and creeping
waves (CW) contribute to the scattering. The almond is
9.936× 3.84× 1.26 in. in length, width, and thickness,
respectively.

The 2-D images of the 9.936-in. NASA almond were
meshed and computed with a numerical solution to
Maxwell’s equations. Hence, all scattering physics are
included in the computational model: specular, edges,
surface wave, and shadowing. Results for horizontal and
vertical polarization are presented in figures 6 and 7,
respectively. The frequency is 9.92 GHz, which makes
the almond 8.34λ in length so that the scattering regime
is just inside the optics region.

The RCS and 2-D images were computed by the
MOM3D computer code. (See ref. 2.) The pointed tip is
oriented at 180° azimuth angle with the blunt end at 0°
azimuth. The azimuth plane monostatic RCS computa-
tions are shown in figures 6 and 7 for horizontal and ver-
tical polarizations, respectively. The lower RCS tip
region is the aft sector from±120° where the signature is
dominated by surface traveling waves reflected from the
aft vertex. In this sector no specular scattering occurs.
Outside of the aft tip sector the scattering is due mostly
to specular returns with some surface wave scattering
adding in and out of phase. Downrange–cross-range 2-D
images are shown in figures 6 and 7 for horizontal and
vertical polarizations, respectively, at increments of 15°
from 0° to 180° in azimuth angle.

The specular nature of the scattering is clearly evi-
dent on this target from 0° to 120° where there is always
a surface normal pointing back toward the transmitter-
receiver. This doubly curved geometric optics specular
return isσGO = πR1R2 whereR1 andR2 are the surface
radii of curvature at the specular point (where the surface

normal points back toward the source). Hence, those
regions on the almond whereR1 and R2 are large will
have a high RCS as shown in the 90° broadside image.
When viewed in the region of 135° to 180°, a tip return
due to the tip current discontinuity and a surface creeping
wave which spins around the target are evident.

Airplane configuration.The next example from
MOM patch computer code results is a 3.7λ commercial
transport configuration shown in figure 8(a). The excita-
tion frequency was 6 GHz at horizontal polarization,
which corresponds to approximately 24 to 30 MHz for a
full-scale airplane. The MOM3D computer code was uti-
lized for this example with the left-right symmetry
option. The mesh model was composed of 4575 trian-
gles, which resulted in 6733 unknown current couples for
813 unknowns per square wavelength. The images were
computed at a 0.5λ resolution. The azimuth cut RCS for
0° elevation is shown in figure 8(b). The nose of the air-
plane corresponds to 0° azimuth. The scattering regime
for this case is in the resonant regions because this con-
figuration is less than 10λ in length. Therefore, in addi-
tion to specular scattering mechanisms, nonspecular
surface-, edge-, and creeping-wave returns contribute to
the signature.

Two-dimensional downrange–cross-range images
are presented at increments of 15° from nose to tail on
aspect angles for horizontal polarization. Characteristics
observed in the images are summarized as follows:

• At 0°, the dominant scattering centers are the engine
pods and traveling-wave reflection from the wing
roots.

• At 15°, the leading edge of the left wing becomes dom-
inant because of edge diffraction.

• At 30°, the left wingtip and wing root dominate.

• At 45°, note a specular return from the forward fuse-
lage, an edge return from the rear stabilizer, returns
from the left wingtip and wing root, and a return from
the rear engine pod.

• At 60°, the returns are similar to those at 45°.
• At 75°, specular mechanisms (surface normal pointing

back toward the illumination source) are apparent from
the forward fuselage and engine pod as well as a
traveling-wave (TW) return from the stabilizer root.

• At 90° broadside, specular returns from the fuselage,
vertical fin, and engine pod dominate the scattering. At
this angle, the presence of the wing shields (i.e., shorts
out) some of the incident field on the fuselage.

• At 105°, the scattering centers are the rear fuselage and
engine pod.

• At 120°, the left trailing-edge wing root is dominant.
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• At 135°, the trailing edge of the left wing and the stabi-
lizer are peak scattering centers.

• At 150°, a TW return from the vertical fin is the peak
scatterer.

• At 165°, scattering is minimal with multiple low-level
returns from the wing and stabilizer tips and edges.

• At 180° (tail-on), the peak scattering center is the sta-
bilizer trailing edge.

Body-of-Revolution MOM Computer Code
Implementation

In BOR-MOM computer codes, the fundamental
coordinate system is cylindrical (ρ, ϕ, z) with orthogonal
radial, azimuthal, and axial components. In this case the
row measurement subroutine is based onkρ, kz, andϕ
where (kρ, kz) are a function of the polar angleθ of the
desired field computation. In the BOR-MOM formula-
tion, thenth-modal scattered field at (θ, ϕ) is

(25)

whereRn andJn are thenth-modal row measurement and
current column vectors, respectively. The computation
of R requireskρ- andkz-vector components as functions
of θ inside the row or voltage matrix subroutine. These
k-vector components are computed inside theR sub-
routine as

(26)

Note that the row (or voltage) matrix is a function
only of the polar angleθ. For bistatic imaging, theR sub-
routine can be modified to input theks vector directly.
The bistatic scattered field is computed withkρ andkz
input to the row measurement subroutine with the defini-
tions (fig. 9) of

(27)

For the BOR, the cross-range direction is in the polarθ
direction because by definition the body is rotationally
symmetric in azimuthϕ.

For BOR volumetric images,kvol is in the azimuthal
ϕ direction shown in figure 10. Thus, the bistatic BOR
radiation is computed at an azimuth angle of

(28)

and a newkρ is computed as

(29)

Note thatkz does not require modification because it is
not a function ofkϕ.

 From the previous discussion, the computation of
the bistaticEs(ks) image array can be accomplished with
minor changes to the existing algorithms that compute
scattered radiation from a current distributionJ.

Body-of-Revolution Image Examples

Sphere.The first BOR example is a sphere (ka= 4)
of radiusa = 0.636λ (circumference equal to 4λ). This
puts the sphere in the resonant regime for scattering
where the two scattering mechanisms are the specular
front face reflection and the two lower level surface
creeping waves propagating around the back (shadow)
side. The BOR computer code used for this example is
described in the appendix of reference 9. The sphere-
generating curve was composed of 62 segments resulting
in 61 triangle functions and 122 (2× 61) t and ϕ
unknowns per Fourier mode. The number of modes was
ka+ 1 = 5. The sample density was 31 triangles per
wavelength of the generating curve; the wavelength was
1.0 m.

The net RCS is the phasor sum of the front face and
creeping-wave returns, which is approximately 0 dBsm.
The 1-D and 2-D images are shown in figure 11 where
the front face and rear creeping-wave scattering mecha-
nisms are clearly evident. The front face specular
reflection is equal toσGO = πa2 = 1.27 m2 = 1.05 dBsm,
which is the value shown in the 1-D downrange image.
The creeping-wave contribution shown in the downrange
image is approximately−12 dBsm and originates
from the rear of the sphere. The creeping wave in
verticalpolarization is over the top and bottom of the
sphere, while in horizontal polarization, the creeping-
wave path is on each side. The horizontal and vertical
polarization returns are the same as required by geomet-
rical considerations.

Airplane configuration BOR-PATCH model.A
hybrid BOR-PATCH configuration target is the previous
airplane configuration (MOM-patch computer code) with
the fuselage modeled as a body of revolution and the
wings, engines, and control surfaces patch modeled with
triangles. The BOR-PATCH computer code from refer-
ence 9 was utilized for this image computation. The fuse-
lage-generating curve was composed of 73 triangles for
72 t and ϕ BOR unknowns for a total of 144 BOR
unknowns. The number of BOR modes was three. The
wings, engines, and control surfaces were modeled
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exactly as in the all-patch representation. The principal
characteristics of the hybrid model are that the wing-
fuselage and control-surface–fuselage interfaces were
not electrically connected surfaces, i.e., the patches were
not overlapped onto the BOR fuselage, and the slight
mold line changes for the fuselage crew station were
neglected. The configuration is shown in figure 12 along
with the horizontal polarization azimuth-cut monostatic
RCS. The 2-D downrange–cross-range images are pre-
sented in figure 12 at increments of 15° from 0° to 180°,
just as was done before in figure 8. The resolution of
0.5λ was also as before. As expected, the BOR-patch and
all-patch models show very similar scattering centers and
levels. The two models, while very similar, are not quite
electrically the same; the BOR-patch model does not
include the electrical connection and the crew station.

Physical Optics Computer Code Implementation

Physical optics computational models are another
class of EM algorithms to which bistatick-space imaging
can be applied. In physical optics the body current distri-
bution is determined by the incident magnetic field. No
matrix fill or LU factorizations are required as with
MOM. For PO, the experimental swept-frequency–
angle-rotation approach to imaging could be used to
create computational images without computational
penalty. However, the bistatic technique can also be used
to provide the advantage of imaging radiation from a
single-current distribution, i.e., the currents resulting
from one frequency and one illumination angle
excitation.

The physical optics assumption for the currents
induced on a PEC surface from an incident plane wave is
that, on the illuminated portions of the surface, the cur-
rents are twice the incident tangential magnetic field:

(30)

where  is the local surface normal. On the shadow sur-
faces the currents are assumed to be zero. The PO current
assumptions hold well for surfaces greater than severalλ
in size with a radius of curvature greater than severalλ.
Physical optics does not hold near edges and, thus, does
not predict edge diffraction scattering or nonspecular
scattering phenomena such as traveling, edge, and creep-
ing waves. Nevertheless, PO is a useful optics regime
computational model for those geometries where non-
specular mechanisms are insignificant. Physical optics,
by its very optics nature, is polarization independent. The
PO algorithms can also be constructed to include edge
diffraction models to account for these polarization-
dependent scattering mechanisms.

The scattered field from physical optics currents in
direction ks due to surface currents induced by a plane
wave with incident directionk i is expressed in cross-
sectional form (ref. 3) as

(31)

where  is the local surface normal,  is the receiver
unit polarization vector, and  is the incident magnetic
field. For the usual PO integral the spatial directions ofk i

andks are radial, i.e., in the directions of incidence (exci-
tation) and scattering, respectively, and are functions of
the polar and azimuthal angles (θ, ϕ). The scalar magni-
tude of each is equal to the free-space wave number
|k| = 2π/λ.

For bistatick-space imaging, the radialks vector is
replaced with

(32)

wherekdown, kcross, andkvol are given by equation (15).

Now ks is not radial (except for downrange-only images)
and its magnitude is not equal to the free-space wave
number. For a given resolution and image extent, the

 array is computed by equation (31) with
equation (32) for input to the FFT algorithm that pro-
duces the image. Conceptually, bistatick-space imaging
for PO computer codes is reasonably straightforward to
implement.

Physical Optics Image Examples

NASA almond.The first example of a physical
optics image will be the NASA almond whose geometric
description was presented earlier. This target is a pointed
tip with doubly curved geometry, which has low RCS
when viewed in the tip angular sector (Azimuth= 180°).
(See fig. 13.) Outside of the low frontal sector, a surface
normal is always pointing back toward the radar creating
a bright high-level specular RCS return.

The RCS and 2-D images were computed with the
PO PIXEL computer code from reference 10. The mono-
static RCS at 9.92 GHz is presented in figure 13. At this
frequency the almond is 8.34λ in length, which places
the scattering regime just inside the optics region. The
PIXEL computer code model is pure PO; hence, the
backscatter results are polarization independent. Edge
diffraction is not included in the model. Also, as is
always the case with any PO computer code, a disconti-
nuity exists in current from the illuminated region to the
shadow region. This shadow boundary current disconti-
nuity creates afalse RCS return. This phenomenon is
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shown in some of the 2-D images in figure 13, most pre-
dominately at Azimuth= 90°. The so called “poor
man’s” shadowing was used, i.e., only those facets
whose surface normal point into the half space occupied
by the transmitter-receiver are included in the PO
computation.

Downrange–cross-range 2-D images are shown in
figure 13 at 15° increments of azimuth angle from 0° to
180°. Again, the specular nature of the scattering is
clearly evident on this target from 0° to 120° where a
surface normal is always pointing back toward the
transmitter-receiver. When viewed in the region of 135°
to 180°, a tip return due to the tip current discontinuity is
apparent. The false shadow boundary RCS is clearly
shown in the 180° tip view and at broadside 90° and
shows to a lesser extent in the other views.

Airplane configuration.Our PO example of an air-
plane configuration uses the same triangle-faceted model
as was used in the all-patch MOM3D image example in
figure 8 at the same 6-GHz frequency. As such, the air-
plane is more appropriately in the resonant regime rather
than in the optics scattering regime where PO is more
appropriate. Nevertheless, the same geometric model
was analyzed with the PO PIXEL computer code. The
PO monostatic RCS for an azimuth cut at 0° elevation is
shown in figure 14.

The 2-D downrange–cross-range images, computed
with the same 0.5λ resolution as before, are presented at
increments of 15° from 0° to 180° in figure 14. Compari-
son of these PO images with those computed from
MOM3D (fig. 8) is instructive. When specular scattering
dominates the RCS, such as broadside to the airplane, PO
and MOM3D produce similar RCS levels. In the front
and rear sectors, where edge diffraction and surface wave
phenomena dominate scattering, the PO-predicted results
are much lower than the MOM3D predictions.

Finite Element Frequency Domain Computer
Code Implementation

The implementation of the imaging algorithm to
finite element frequency domain computer codes
requires that the near-field to far-field transform be
modified to compute the scattered fields for the various
kdown andkcross values. Several transforms are used to
compute FEFD far-field data. The harmonic expansion,
the Green’s theorem integral, and the volume source
integral methods are described in reference 11. The
bistatic-imaging technique is very difficult to implement
in the harmonic expansion method and will not be
discussed.

The Green’s theorem integral uses the tangential
fields on a surface surrounding the scatterer to determine

surface equivalent currents. These equivalent sources are
integrated to the far field. However, uniqueness of the
actual sources on the scatterer is lost, and this method is
not useful for this type of imaging.

The volume source integral far-field transform uses
the actual sources on the scatterer to compute the far
field, as is typically done in moment method far-field
calculations. The volume source integral transform for
horizontal polarization is given by

(33)

where the regionV includes all permeable regions in the
solution space, andSc includes all conductive regions in
this space. The 2-D Green’s functionG(ρ, ρ′) is modified
for the far field by

(34)

and thek values required for the image are introduced
into the integral. The volume source integral methods
have been implemented for both polarizations. Details
concerning the implementation of this method are found
in reference 12.

Finite Element Frequency Domain Image
Examples

Example images are shown for the Electromagnetic
Code Consortium (EMCC) 2-D Benchmark case 4. (See
ref. 6.) The geometry and bistatick-space images
obtained from FEFD results for this case are shown in
figure 15. The incident field is vertically polarized for
this case and is impinging from the bottom. The mini-
mum image contour is−10 dBλ with a 5-dB increment.
The resolution is set to 1.5λ.

The images in figure 15 reveal that the primary scat-
tering center in this geometry for scattering vertical
polarization at these angles of incidence is the metallic
wedge behind the three layers of low-loss dielectric. The
low-loss dielectric does not attenuate any energy prior to
impinging on the metallic wedge, but the image does
show some diffraction from the dielectric layers. The
magnitude of the backscatter from the wedge increases
from 180° to 210° as one side of the wedge becomes
more perpendicular to the incident wave.
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MOM Computer Code Implementation of
5λ-Long End-Fed Antenna

The application of the bistatick-space image tech-
nique for antenna method-of-moments (MOM) computer
codes is implemented in exactly the same manner as for
scattering. The only difference is that the right side
voltage-forcing function now corresponds to localized
port excitation on the body. (See refs. 2 and 7.) By speci-
fication of a localized feed point, amplitude, and phase,
the resulting current distributionJ is computed. Then,
just as in scattering cases, this current radiates a scattered
field. A 1-D, 2-D, or 3-D image of the radiation produced
by this current distribution in any specified spatial direc-
tion can be computed. The same image algorithms and
subroutines used for scattering can also be used for
antenna images.

Because the image resolution is typically 0.5λ or
greater, the bistatic-imaging technique can produce use-
ful diagnostic images for those antennas whose size is
greater than the desired resolution. Thus, imaging multi-
wavelength antennas is meaningful but imaging quarter-
wavelength antennas may not be.

The example antenna image is that of a long-wire
5.0λ end-fed antenna shown schematically in figure 16.
This antenna is a traveling-wave end-fire radiator whose
maximum gain is produced near grazing at an angle
θTW, max≈ 49(λ/l)1/2 = 22°. The traveling-wave current
produced by the end voltage excitation produces the
main lobe. Then, if the end is not terminated in a
matched load, this traveling-wave current is reflected and
then proceeds to radiate a secondary end-fire lobe in the
opposite direction. The radiation pattern for our end-fed
5.0λ antenna is shown in figure 17(a) for horizontal
polarization. The maximum gain is almost 10 dBi (dB
above isotropic) in the forward direction (158°) and
7 dBi for the reflected traveling-wave lobe in the back
direction (22°).

Two-dimensional images for this antenna were com-
puted for four resolutions from 0.5λ to 2.0λ in steps of
0.5λ and are shown in figure 17. The image angles were
centered near the forward TW lobe at 160°, near the
reflected TW lobe at 20°, on a forward intermediate side
lobe at 120°, and on a rear side lobe at 60°. When the res-
olution is 1.0λ or greater, the following results were
observed:

• As expected, the image forward traveling-wave scatter-
ing is greater than the reflected wave scattering.

• Traveling-wave radiation is produced over the length
of the antenna with the peak amplitudes occurring near
the feed end for the forward traveling wave and near
the opposite end for the reflected wave.

• The side lobe radiation is produced from the ends of
the antenna with the forward side lobe having greater
amplitude than the rear side lobe. In each case the exci-
tation end appears to produce the larger contribution.

Three-Dimensional Image Implementation
Examples

The application of the bistatick-space image
technique to three dimensions is straightforward.
The region ink space now becomes a volume, the image
integral equation (9) is threefold; and the Fourier
transform becomes three dimensional. Each dimension in
filling the E(ks) array is a loop over the corresponding
ks = (kdown, kcross, kvol) values. The FFT can then be
computed with a multiple-dimension algorithm or can
be done by rows, columns, and planes with a one-
dimensional transform.

The real difficulty with three-dimensional images is
not the computation of the image but the display of the
resulting data. The approach taken for the examples
in this study uses the marching-cubes algorithm in
theSilicon Graphics Explorer Package. (See refs.13
and14.) The Explorer Package contains individual mod-
ules (i.e., precompiled subroutines with standard inter-
faces) which can be combined by the user for the various
tasks required to create the image. The resulting FFT
image data and geometry is read in the appropriate mod-
ules. The 3-D volumetric image data amplitude values
are converted to user-specified isosurface levels (i.e., the
equivalent of a single-value 2-D contour map). These
isosurface levels are then viewed interactively from
selected view angles.

Three-dimensional image for  point targets.This
example is a very simple array of point targets as shown
in figure 18. Each point has an assigned spatial location
and RCS value. This type of target is a very useful diag-
nostic for development of imaging software. The target
array can be created to uniquely identify each spatial axis
by variation of position and/or RCS level so that the
resulting image coordinate system can be debugged.
Each point target is independent of the others and scatters
isotropically. The net RCS from a collection ofN points
is computed as the phasor sum

(35)

wherek inc is the wave-number vector (direction of inci-
dence) andσi andr i are the RCS amplitude in m2 and the
spatial location, respectively, of theith-point target.

The target array chosen for the 3-D image in
figure18 has four points: one at the origin with an
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amplitude of 10 m2 and one on each positive coordinate
axis 1.0 m from the origin, each with an amplitude of
1 m2. For analytical purposes, the wavelengthλ = 1.0 m,
the resolution∆r = 0.25λ, and the image volume extent
was 4 m. The resulting FFT size was 16× 16 × 16. The
excitation view anglekscat was set perpendicular to the
plane of the three points on the coordinate axes and
resulted in an elevation angle of 35° and an azimuth
angle of 45°. The isosurface contour was set at−10 dB.

The resulting 3-D isosurface levels are shown in fig-
ure 18. The axis system and excitation vector are super-
imposed in figure 18 for clarity. Each of the three axis
targets has the same magnitude, albeit smaller than the
origin target because each was input with a smaller RCS
value.

Three-dimensional image for parallel square
plates.A pair of parallel 3.0λ-square plates 1.0λ apart
has been imaged volumetrically in figure 19. The wave-
lengthλ = 1.0m. In this example, a 2-D image overhead
would not show the separate scattering centers of each
plate because the two plates overlay each other. The illu-
mination angles are edge-on to the plate at 0° and along
the diagonal of the plate at 45°. The 3-D images are
shown for horizontal polarization for two resolutions of
0.25λ and 0.5λ.

When viewed edge-on, the two leading edges of the
plate are the dominant scattering centers due to parallel
polarization edge diffraction and an edge traveling wave
reflecting from the rear vertices. Because the plates are
only 1.0λ apart, the 0.25λ resolution shows these scatter-
ing mechanisms more distinctly. Also, 3-D image results
show a multiple-bounce scattering center appearing from
the center of the plates that is probably due to the Keller
cone bistatic radiation from each edge illuminating the
opposite plate. This scattering mechanism is not apparent
for the single plate in figure 5.

When viewed along the plate diagonals at 45°, the
scattering mechanisms are the two edge waves reflected
from the midvertices and a front vertex tip diffraction. In
addition, longitudinal lines of multiple-scattering sources
are shown on the plates. The origin for these is not cer-
tain; however, these sources may be due to the bistatic
radiation from each of the two edge waves illuminating
the opposite surface in and out of phase. Again, these
mechanisms do not appear on the single plate in figure 5.

Three-dimensional image for sphere.A volumetric
image for a resonant region sphere (ka= 4) is shown in
figure 20. The sphere radius wasa = 0.637m and the
wavelengthλ = 1.0m. The image resolution was set at
0.25λ. The image was computed by the MOM3D com-

puter code. Polarization is vertical, and the isosurface
level was set to−30 dB.

The image clearly shows the large front face reflec-
tion as the dominant scattering mechanism. The creeping
waves, which spin around over the top and bottom for
vertical polarization on the shadowed back side, are
clearly evident. Compare these results with the 2-D
images in figure 11. The 3-D images tend to be qualita-
tive, whereas, 1-D and 2-D images are more quantitative.

Three-dimensional image for an airplane.The air-
plane geometry previously described has been imaged
volumetrically in figure 21. The target was illuminated
with horizontal polarization with nose-on incidence. The
frequency was 6 GHz, and the resolution was set at
0.25λ. Induced body currents computed with the algo-
rithm described in reference 15 cannot be seen in the
black and white version of figure 21. The isosurface level
was set to−40 dB.

The volumetric image shows the engine pods as
being the dominant scattering centers for this illumina-
tion. This volumetric image corresponds to the 2-D
image shown in figure 8.

Comparison of Analytical and Experimental
Images

In this section the computational bistatic-imaging
technique is compared with the experimental swept-
frequency–angle-rotation image technique. The two
techniquesare not equivalent. While each approach pro-
duces images that are similar in many respects, important
differences exist. In this section experimental image the-
ory is reviewed, and then, results for the same geome-
try imaged with both techniques for downrange and
downrange–cross-range are presented.

Experimental Theory

The experimental approach, discussed in refer-
ence1, is a monostatic (backscatter) swept frequency
measurement for downrange coupled with a target rota-
tion for cross-range, i.e., an inverse synthetic aperture
radar (ISAR) image. In two dimensions, the Fourier
transform is on frequency and angle.

The derivation of the experimental image Fourier
transform starts in the same manner as that used for the
bistatic image. Equation (9) is written for 2-D images as

(36)

The first step is to recognize that experimental
images are backscatter monostatic amplitude and phase

E r down r cross,( ) W k( )E ke ks kdown kcross,{ }=,( )∫∫=
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measurements of the scattered field rather than bistatic.
This means that the excitation of the target body will
vary with illumination frequency and angular direction
and that the distancer  in equation (36) is replaced with
2r  because a two-way path from transmitter to target and
back to receiver is involved. For backscatter, the excita-
tion and scattering directions are directly related to the
incident excitationk inc:

(37)

where the scattering direction is opposite of the excita-
tion direction. The incident excitation is centered about
the angular direction of the desired image shown in fig-
ure 22 and is a function of frequency and rotation angle:

(38)

Thus, the experimental variables become excitation
frequencyf and view angleθ. By sweeping the frequency
and rotating the target, an annular circular arc region of
k space is sampled by measurementof Es( f, θ). Because
this is a circular region,kdown andkcross are not indepen-
dently sampledby ( f, θ), i.e., kdown and kcross both
depend on (f, θ). To associate downrange with only the
frequency sweep and to associate cross-range with angle
rotation, the small rotation angle approximation is intro-
duced as in references 1 and 16 so that

(39)

With this approximation, the incidentk vector becomes

(40)

so that the measured scattered field is sampled ink space
as

(41)

wherek = 2π/λ = 2π f/c = ω/c. Thus,kdown is a function
only of frequency, and for each frequency,kcross is a
function of angle. The image Fourier transform equa-

tion (36) is reformulated to the Fourier transform equa-
tion in references 1 and 16:

(42)

The downrange transform is time, or distance when
time is multiplied by the speed of lightc, while the cross-
range transform is the rotation angle. The factor of2 in
the distance expression occurs because this is a two-way
measurement from transmitter to target and then back to
receiver.

By comparison of this approach with the bistatic
image approach, the following differences are noted:

• The experimental image is backscatter.

• The transform domain is frequency and rotation angle,
which results in the transform variables of time and
cross-range.

• The experimental domain maps to a circular or polar
region in k space. To prevent downrange–cross-range
coupling, with resultant defocus and image smear, a
small angle approximation must be made. Otherwise a
focusing algorithm must be utilized.

• The measured scattered field which results from the
target current distribution is a function of frequency
and illumination angle; hence, the resulting image is a
composite over the frequency bandwidth and angular
rotation.

Bandwidth and Resolution

The experimental image resolution is proportional to
bandwidth,

(43)

wherec is the velocity of light,B is the bandwidth, and
∆f/f is the fractional bandwidth. A 100-percent band-
width, i.e., from f = f0/2 to 3f0/2, is required for 0.5λ
resolution.

Cross-range resolution is (ref. 1)

(44)

The bistatick-space bandwidth is twice the equivalent
experimental bandwidth for the same resolution. This
can be shown by equating the fundamental Fourier trans-
form pair variables as

(45)
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The time delay is∆t = 2∆r/c; for equivalent resolutions
∆r, ∆r can be canceled. Thus, the bistatick-space band-
width must be twice the experimental frequency band-
width for equivalent resolutions:

(46)

For 0.5λ resolution, the experimental frequency sweep
must be∆f/f0 = 1, so that the illumination frequency is
bounded by

(47)

For the equivalent 0.5λ resolution bistatic case, the
k-space bandwidth is∆k = 4π/λ0 = 2k0. In downrangekr
is centered onk0 = 2π/λ0; hence,kr is bounded by

(48)

Because of the swept frequencies in the experimental
image, the downrange information has a time delay, i.e.,
frequency and time are a Fourier transform pair. This
results in scattering mechanisms, which are delayed in
time, being imaged farther downrange. Thus, multiple-
bounce mechanisms will often image past the end of the
body. For cavities imaged at an angle, the downrange–
cross-range image will show the rear cavity return at the
downrange location with a cross-range at the location of
the cavity opening.

Traveling-wave current radiation is not imaged at the
source but at the geometric reflection point because of
the swept frequency nature of the experimental image.
This phenomenon occurs because the image average over
frequency phase cancels. The only stationary phase point
is the geometric reflection point on the body.

Some of the scattering issues and comments on how
the computationalk-space bistatic approach and the
experimental approach differ are listed in table I.

Experimental and Bistatick-Space Images

In this section 1-D downrange and 2-D downrange–
cross-range-measured images are presented for compari-
son with bistatick-space images. The target is a 6-in.-
(0.15-m-) square plate viewed from three aspect angles:
normal to the plate, edge-on at 10° elevation, and at 45°
azimuth along the diagonal at 10° elevation. The nomi-
nal illumination frequency is 10 GHz withλ = 1.18 in.
(0.03 m).

When images are compared, particularly 2-D
images, the same window weight function and resolu-
tions should be used. In our examples the Hanning win-
dow was utilized, and three resolutions for the computed
images are presented. The amplitude and distance data

scales are identical for both the experimental and com-
puted images. However, note that on the 1-D experimen-
tal images, the downrange distance is 0.5 m at a
downrange location of 0.3 to 0.8 m.

Experimental parameters.The square plate was
imaged utilizing a compact range with a center frequency
of 10 GHz and a frequency bandwidth of 4 GHz, from 8
to 12 GHz. The resulting downrange resolution was,
from equation (43), 1.25λ = 1.47 in. = 0.0375m. The
angular illumination sweep was∆θ = 20°.

Computational parameters.The square plate
bistatic k-space images were computed by MOM3D.
(See ref. 2.) The mesh model had 5000 triangles, which
result in 7400 unknowns. The geometry symmetry option
was utilized so that the system matrix was decomposed
into two smaller matrices of 3725 and 3675 unknowns
each. The sample density was 286 unknowns per square
wavelength. The image extent was set to 0.5 m and the
window weight function was Hanning. Threeresolutions
of 0.5λ, 1.0λ, and 1.5λ or 0.015, 0.030, and 0.045m,
respectively were computed.

Image comparisons.View 1 is perpendicular to the
plate shown in figure 23 for 1-D and 2-D images for hor-
izontal polarization (vertical polarization is not shown
because the results are the same). The dominant scatter-
ing for this case is specular with a peak RCS of
σspecular= 4πA2/λ2 = 7.6 m2 = 8.8dBsm as shown in the
experimental and computed 1-D images. For the 2-D
images, the backscattered radiation is coming uniformly
from the entire plate. For the computed images, the
coarser resolutions smear the image over a larger spatial
region. For the 1-D images, the peak RCS stays constant
with resolution. For 2-D images the peak RCS varies
from 3.5, 0, and−5 dBsm for resolution equal to 1.5λ,
1.0λ, and 0.5λ, respectively. This is one reason why the
same resolution should be used when image comparisons
are made. The experimental image shows a lower level
source, which is probably due to edge-to-edge diffraction
and is sometimes called “talking edges,” emanating from
behind the plate. This return is categorized as a multiple
bounce and images later in time downrange of the plate.
This effect is not apparent in the computed images.
Residual signal-processing side lobes are shown in the
computed 1-D and 2-D images.

View 2 is normal to the plate edges (Azimuth= 0°)
at an elevation angle of 10° horizontal polarization
asshown in figure 24. The dominant scattering is due
to leading-edge diffraction in this polarization. For verti-
cal polarization, the trailing edge is the dominant scat-
terer because of traveling-wave reflection as shown in
figure 25.
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The images with horizontal polarization (fig. 24(a))
show the leading edge as the dominant scattering mecha-
nism along with two edge waves reflecting from the rear
vertices. The leading-edge return for the 1-D images
(fig. 24(b)) is close to the theoretical knife-edge value
of σedge= l2/π = 0.00074 m2 = −21.3 dBsm. The experi-
mental image also shows a scattering center behind the
plate that is due to rear corner-to-corner diffraction,
which arrives later in time. The edge wave mechanism in
the computed images shows a spatial distribution with a
peak at the rear vertex. This distribution can be inter-
preted as the edge wave, which upon reflection loses
energy from radiation as it travels back toward the front
corner. Thus, a decaying intensity of the image is
observed. The computed coarser resolution images smear
the return over a larger spatial extent.

The vertical polarization images (fig. 25(a)) show
the trailing edge as the dominant scattering mechanism.
The experimental image also shows a scattering center
behind the plate that is due to a second-bounce surface
wave, i.e., from the rear edge to the front and a second
reflection from the back edge. This wave arrives later in
time and experimentally images behind the plate. This
scattering center is not present in the computed images.
The trailing-edge return from the 1-D images (fig. 25(b))
is much less than the theoretical knife-edge value
of σedge= l2/π = 0.00074 m2 = −21.3dBsm. The view
angle for this case is much less than the elevation angle
for a maximum traveling-wave return that would occur at
an excitation elevation angleθTW = 49(λ/l)1/2 = 22°. As
before, the computed coarser resolution images smear
the return over a larger spatial extent.

The experimental vertical polarization images
(fig. 25(a)) suggest a scattering mechanism from the
front edge of the plate, which is not observed in the com-
puted images. This scattering is hypothesized to be due
to the trailing-edge-reflected surface wave, and that if the
plate were electrically longer, the leading-edge scattering
would not be seen. The computed images do not show a
leading-edge scattering center. The dominant mechanism
for this viewing angle is the trailing-edge traveling-wave
reflection. In the computed 1-D and 2-D images, the peak
occurs at the rear and decays toward the front of the
plate. This corresponds to the interpretation that the trav-
eling wave, upon reflection, loses energy from radiation
as it travels back toward the front edge. Thus, the image
decays in intensity. This phenomenon is not observed in
the experimental data because the swept frequency
nature of the image causes the stationary phase locations
to coincide with the edges of the plate. The leading-edge
return in the experimental images is interpreted as the
trailing-edge-reflected surface wave, which has not com-
pletely decayed by the time it reached the front. This
phenomenon is known to occur because the multiple-

bounce traveling wave arrives later in time. Because the
traveling-wave mechanism images differently for the
computed and experimental approaches, the magnitudes
of high peaks are not the same.

View 3 is along the plate diagonal, at an azimuth
angle of 45°, and at an elevation angle of 10° as shown in
figures 26 and 27 for horizontal (parallel) and vertical
(perpendicular) polarizations, respectively. The domi-
nant mechanisms are nonspecular edge and traveling
waves.

The horizontal polarized images (fig. 26(a)) show
scattering from the four tips of the plate. The two domi-
nant tips are the midvertices, which reflect the edge trav-
eling wave. The 1.0λ- and 0.5λ-resolution images show
these reflected edge waves on the two front-illuminated
edges with the peak amplitudes near the reflection point.
The rear vertex scattering center is probably due to edge
waves whichturned the first corner and then reflected
from the rearmost vertex and/or to tip diffraction because
the plate is viewed at an elevation of 10°. The front tip
return has the lower magnitude due to tip diffraction.

The experimental images show the front vertex with
a lower amplitude than the rear. The opposite occurs in
the computed images. The reason for this difference is
not clear. Possibly, the measured front tip image is the
phasor sum of tip diffraction and the remainder of the
reflected edge wave, which are phase subtracting to pro-
duce a smaller return.

The vertical polarization images (fig. 27(a)) show
scattering from the rear vertex, which is due to
the reflected surface traveling wave. As before with
traveling-wave mechanisms, the experimental and com-
puted image magnitudes differ. The computed results
show a lower amplitude spatially distributed return,
while the experimental image shows a higher amplitude
return localized to the rear vertex. The computed images
show the maximum amplitude near the aft reflection
point with the reflected traveling wave decreasing in
intensity as it propagates toward the front. The 1-D-
measured image shows a small return from the front tip,
which may be the stationary phase residual of the
reflected traveling wave. The view angle in elevation is
less than the angle of approximately 18° for maximum
surface wave reflection that would occur with the plate
diagonal length.

Comparison of the experimental images with the
bistatick-space images shows the following:

• Scattering mechanisms that are localized produce simi-
lar images. The experimental and computed images are
similar in most respects for specular and leading-edge
scattering. For trailing-edge diffraction images may be
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similar; however, this comparison has not been made
for a truly large target many wavelengths in size.

• Multiple-bounce scattering mechanisms image differ-
ently. The experimental images show multiple reflec-
tions farther downrange because of a time-delay
mechanism. This agrees with the physical view. The
bistatic k-space approach images the current distribu-
tion, which, by definition, exists only on the surface
and, thus, cannot be farther downrange. The computed
images show multiple-bounce mechanisms as locations
on the body where those current mechanisms exist, i.e.,
placement of radar-absorbing material at these loca-
tions would reduce the scattering.

• Surface traveling waves and edge waves image differ-
ently. The computed images tend to show edge and
traveling waves as distributed sources over the scatter-
ing surfaces, which corresponds to physical intuition
for this mechanism. The swept-frequency-measured
images show these mechanisms at the body fore and aft
end point locations. In this case the bistatic images
more closely resemble the physical interpretation.

Summary Remarks

A bistatic k-space analytical imaging technique has
been introduced which allows diagnostic images to be
inexpensively computed from a single-body current dis-
tribution. A significant reduction in computational pro-
cessing is obtained because a frequency sweep over a
short-pulse bandwidth is not required.

Images permit physical insight and understanding
into how a radiation or scattering pattern is produced by
decomposing the resultant radiation into contributions
from localized scattering centers or hot spots. Knowl-
edge of these hot spots permits a user to understand and
modify the structure to obtain desired features.

The costs associated with computation of bistatic
images are usually small compared with the effort
required to obtain the current distribution. From the cur-
rents, the bistatick-space fields are computed with the
generalized radiation integral. This is similar to the effort
required to compute a radiation pattern. The computed
k-spaceE(k) fields are then Fourier transformed to obtain
the spatial image.

The bistatick-space technique can be applied to both
antenna and scattering problems. It can be used with any
frequency domain computer algorithm that produces a
current distribution on the geometric structure. The
technique may be used with computer codes such as
method of moments, finite element frequency domain,
and physical optics. Images may be computed in one,
two, or three dimensions typically corresponding to
downrange, downrange–cross-range, and volumetric
images, respectively.

The k-space scattered fields are computed on an
orthogonal grid ink space corresponding to (kdown,
kcross, kvol). These are independent and, thus, eliminate
image-smearing problems commonly associated with cir-
cular arc ISAR experimental images.

Bistatic k-space images are not the same as those
produced by the sweep frequency experimental
approach. Some contrasts are listed as follows:

• Specular scattering mechanisms image similarly.

• Traveling-wave-distributed radiation sources image
along the current source rather than at the experimental
stationary phase end points.

• Multiple-bounce time-delay mechanisms image at the
body locations responsible for scattering.

• Bistatic images are formed from currents caused by a
single frequency and a single-excitation angle.

• Experimental backscatter images are formed from
currents caused by a bandwidth of frequencies and
multiple excitation angles.

Several EM computer code applications have been
shown, and an implementation approach was given for
each. Implementation is not difficult because most com-
puter codes already have subroutines that utilize the nor-
mal radiation integral. The radiation subroutines need
only to be generalized to compute arbitrary points in
k space rather than to usekradial as a function of angle.

NASA Langley Research Center
Hampton, VA 23681-0001
March 1, 1996
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Appendix

Image Issues

The following image topics are reviewed:

• Resolution and bandwidth

• Dynamic resolution improvement with windowing

• Signal-processing gain

• Data smoothing

• Distributed image amplitude levels

• Image units

Resolution and Bandwidth

Resolution is the ability to distinguish the separation
between two adjacent scattering centers. The following
two cases arise: (1) when the two scattering centers have
the same amplitude and (2) when they do not. Resolution
is inversely related to bandwidthB, i.e., greater band-
width is required for greater resolution (smaller∆r). In
the monostatic case, resolution in downrange is

which can be rewritten in terms of fractional bandwidth:

This relationship is derived from the maximum change in
phase that can occur without aliasing. With the FFT pro-
cess to transform the frequency data (far field) to range
data (near field), resolution is the peak-to-null distance or
the FFT half period.

Cross-range-imaging resolution is obtained by rota-
tional bandwidth∆φ. This is achieved either by rotating
the target (inverse synthetic aperture radar (ISAR)), or by
rotating the radar about the target (synthetic aperture
radar (SAR)). The cross-range resolution is

This relationship can also be derived from the maximum
change in phase that can occur without aliasing.

For example, atX band with a center frequency of
10GHz and a bandwidth of 4 GHz (8 to 12 GHz), the
fractional bandwidth is 0.4 for a resultant resolution of
∆r = (1.18/2)(1/0.4) = 1.475in. (See fig. A1.) In this fig-
ure the target is a point scatterer with an amplitude of
1 m2 = 0 dBsm. For the cross-range image to have the
same resolution, the angular bandwidth (rotation) would
be 23°.

Two equal-amplitude 1-m2 point targets spaced one
resolution cell apart can be compared in figure A2. The
first scatterer is at the origin and the second is placed
∆r = c/2B = 1.475in. farther downrange. The image for a
rectangular window function shows an error of 1.0 dB in
amplitude and a shift error in position. This is caused by
the close proximity of the two targets. By placement of
the two point targets two resolutions cells apart at
∆r = 2(1.475) = 2.95in., figure A3 shows a reduction of
the image amplitude error to 0.7 dB and also reduces the
position error.

When adjacent scattering centers do not have equal
magnitudes, the smaller target can become buried in the
side lobes of the higher-amplitude scatterer. To resolve
closely spaced unequal targets, dynamic resolution with
the use of windowing functions is required.

Dynamic Resolution Improvement With
Windowing

When adjacent scattering centers have unequal mag-
nitude, the smaller scattering center can be lost in the
image side lobes of the larger scattering center. Improved
dynamic resolution can be obtained with an aperture-
shaping–weighting function (or windowing function) on
the image data before the Fourier transform to reduce the
processing side lobes. This enhancement is obtained at
the cost of poorer range resolution. The intrinsic window
in the transformation is a rectangular window.

A nonrectangular window function makes resolving
capabilities worse for equal-magnitude scatterers. The
resolution is made poorer by the ratio of the area under
the rectangular window divided by the area under the
nonrectangular window function. This ratio defines the
reciprocal of the window gain (Wg < 1).

A cosine (Hanning) window has side lobes which are
down 31.5 dB; hence, the dynamic resolution or the abil-
ity to image lower level nearby scattering centers is made
worse when compared with a rectangular window, which
has its first side lobe down 13 dB. With the Hanning
window the effective resolution is poorer by a factor of
2. A rectangular window is typically used to resolve
closely spaced approximately equal amplitude scatters,
whereas, a nonrectangular window is used to resolve
widely spaced scatterers having significantly different
amplitudes.
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Signal-Processing Gain

The signal-to-noise ratio determines the lowest sig-
nal that can be recognized in its coherent form. Image
Fourier transforms ofN points produce a net gain in the
signal-to-noise ratio because of the integration differ-
ences between coherent and noncoherent signals in the
original data. This effect is called processing gain. Scat-
tering centers add coherently (∝ N2), while noise adds
incoherently (∝ N). The net signal-processing gain in dB
is the ratio of these two:

A 16-point data set would yield a Fourier transform
signal-processing gain of 12 dB in signal-to-noise while
a 32-point transform would have a 15-dB gain, a 3-dB
improvement from doubling the number of points.

However, the signal-to-noise ratio is reduced when a
windowing function is used. This is due to less energy
being incorporated into the overall transform (area under
the window). Now

Data Smoothing

Smoothing the data processed by the Fourier trans-
form is accomplished by addition of zeros to either end
of the data set thereby increasing the sizeN of the trans-
form. This affects only the sampling of the resultant
transformation by making it finer but has no affect on
either the range or dynamic resolution. Because of finer
sampling, higher-precision position and level are
obtained at the expense of making the transformation
size larger.

For example, a 16-point transformation of 300-MHz
bandwidth would yield an 0.5-m step size. (See fig. A4.)
By zero padding the data set by a factor of 4 (a transfor-
mation of 64 points) the resultant step size would be
0.125 m, which results in the smoother image in fig-
ureA5. The smoothing benefit becomes minimal after a
few factors of zero padding have been applied because of
the resultant transform being highly sampled.

Distributed Image Amplitude Levels

A target with a distributed image is one where the
coherent RCS is formed from the coherent elemental
addition from an extended spatial region on the target.
Examples are: (1) a surface-viewed specular where the
coherent RCS is the phase sum from the entire constant-

phase specular region and (2) a traveling-wave source
viewed at the angle for which the elemental current
sources add in phase.

A two-dimensional image of a flat-plate-viewed
specular produces an almost uniform image distributed
over the perpendicular plate dimension. The amplitude
level of this distributed image is not the plate coherent
level. Rather it becomes a function of the effective reso-
lution and coherent length.

If the effective resolution∆reff is greater than the
coherent lengthlc, then the image amplitude is just the
total coherent sum within the resolution cell. When the
resolution cell∆reff is less than the spatial coherent
lengthlc, the image amplitude is decreased because only
the constant-phase region within the resolution cell can
contribute to the image (power) magnitude. Thus, the
distributed amplitude is smaller than the coherent ampli-
tude by the square of the ratio

Thus, the distributed image amplitude is decreased
as the effective resolution∆reff becomes smaller.
Expressed in dB reduction, this becomes

For example, image a 1-m-square plate at 300 MHz
(λ = 1 m). The coherent specular flash isσ = 4πA2/
λ2 = 11dBsm. A downrange image normal to this plate
would produce an image amplitude equal to the coherent
level of 11 dBsm because the coherent length of the plate
in the downrange direction is nominally zero.

However, a two-dimensional image normal to
the plate becomes a distributed image over the 1-m
width of the plate. If the bandwidth is assumed to
produce an image resolution of 0.1 m and a cosine
(Hanning) window function is utilized, the effective
resolution is∆reff = 0.2m. The two-dimensional image
amplitude over the plate would be decreased by
20 log(0.2/1.0) =−14dB. Thus, the two-dimensional
image of this plate would have a magnitude of
11 dB–14 dB =−3 dB over the 1-m plate width.

Image Units

Radar cross section units are that of area, typically in
square meters. In decibel or log space, the reference is
1 m2, which results in units of dBsm. However, images
do not have the same units as coherent radar cross
section.
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Downrange images present scattering power ampli-
tudes versus downrange distance of cross section per unit
distance (σ/m). Hence, downrange images have ampli-
tude units ofσ/m versus distance or decibel units of
log(σ/m) = log(m2/m) = log(m) = dBm.

Two-dimensional downrange–cross-range images
present scattering power amplitudes versus area of
cross section per unit area (σ/m2). This area image
hasamplitude units ofσ/m2 versus downrange–cross-
range. In decibels units, this becomes log(σ/m2) =
log(m2/m2) = log( ) = dB.

Figure A1.  A 4-GHz bandwidth image showing a resolution of 1.475 in. from peak to null.

Figure A2.  Two equal targets one resolution cell apart causing 1-dB amplitude error.
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Figure A3.  Two equal targets two resolution cells apart causing 0.7-dB amplitude error.

Figure A4.  Data smoothed with 16-point FFT; 1-m2 target.

Figure A5.  Data smoothed with 64-point FFT; 1-m2 target.
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Table I. Bistatick-Space Image Issues Compared With Experimental Approach

Issue Bistatick-space images Experimental images

Origin of scattered field Bistatic scattered fields Monostatic (backscatter) fields

Transform domain Directly in k space Frequency for downrange; angle for
cross-range

Fourier transform variables Wave numberk and positionr, kr Frequency and timeωt for downrange
andkrθ for cross-range

Target excitation currents (what the
image represents)

Only at frequency and illumination an-
gle of excitation

Varies over the excitation frequency
and illumination angle

Focus/image smear None because image is computed di-
rectly ink space on an orthogonal
grid of uniformly spaced points

Rotation angle limited to small angle
without use of focusing algorithms.
Inherently a circular region in trans-
form space

Resolution ≈λ/2 limited only by granularity of
current representation; typically,
≈λ/10 requires twice the experi-
mental bandwidth

Set by available frequency band-
width and small rotation angle
approximation

Time-delayed multiple bounce Images currents which radiate in direc-
tion of image

Images downrange as time delay.
Hence, delayed in time

1-D images Downrange (radial) ink space Frequency sweep

2-D images Add cross-range ink space Add rotation angle

3-D images Add perpendicular direction ink spaceAdd measurements over orthogonal
plane

Fidelity for distributed current radia-
tion (traveling waves)

Images the radiation as a distributed
source

Because of frequency sweep, images
the end points of distributed source

Antenna images Straightforward application Not done

Image in direction other than excita-
tion, i.e., bistatic images

Straightforward application Very difficult, seldom done

Cross-polarized image Straightforward application If separate transmit and receive feeds,
rotate one feed

Geometry knowledge Needed for analytics Not needed

Target identification No Yes
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